

JULY 21-24 • SAN JOSE, CA

ONFi: Achieving Breakthrough NAND Performance

Amber Huffman Principal Engineer Intel Corporation

Agenda

- ONFi Workgroup Update
 - Mission and membership
 - ONFi 2.0 specification completed
 - NAND connector specification completed
 - JEDEC collaboration established
- High-speed NAND interface details
- Extending the high-speed interface

Agenda

- ONFi Workgroup Update
 - Mission and membership
 - ONFi 2.0 specification completed
 - NAND connector specification completed
 - JEDEC collaboration established
- High-speed NAND interface details
- Extending the high-speed Interface

Mission... Possible.

- NAND has been the only commodity memory with no standard interface
 Command set, timings, and pin-out are similar among vendors
- NAND has been ripe for standardization due to a few inflection points:
 - 1) Explosion in use of NAND for MP3 players, phones, caches, and SSDs
 - 2) Increase in number of NAND vendors serving the market (2 to 6+)
- ONFi Workgroup was formed in May 2006 to address "gap"
 - ONFI = Open NAND Flash Interface
- ONFi revision 1.0 delivered in December 2006, defines:
 - Uniform NAND electrical and protocol interface
 - Raw NAND component interface for embedded use
 - Includes timings, electrical, protocol
 - Standardized base command set
 - Uniform mechanism for device to report its capabilities to the host

ONFI 1.0 sets a solid foundation for NAND (r)evolution.

DENALI SOFTWARE, INC

OPEN NAND FLASH INTERFACE

Micron

intel

SONY HUNIX SPANSION

A-Data Aleph One **Arasan Chip Systems Avid Electronics** Chipsbank DatalO Entorian Foxconn Hagiwara Sys-Com **Hyperstone** Inphi Jinvani Systech Lotes Marvell Moai Electronics **Orient Semiconductor** POI Sandforce Sigmatel Silicon Storage Tech Smart Modular Tech. Synopsys Telechips

Transcend Information

University of York

Afa Technologies Anobit Tech. **ASMedia Technology BitMicro** Cypress Datalight FCI **Fusion Media Tech** HiperSem InCOMM Intelliprop **Kingston Technology** LSI **Mentor Graphics** Molex P.A. Semi **Prolific Technology** Seagate Silicon Integrated Systems STEC Solid State System Tandon Teradyne, Inc. Тусо **Virident Systems**

Alcor Micro Apacer ATI **Biwin Technology DataFab Systems** Denali Software FormFactor **Genesys Logic Hitachi GST** Indilinx **ITE Tech** Lauron Technologies Macronix Metaram **NVidia** Powerchip Semi. Qimonda Shenzhen Netcom Silicon Motion Skymedi **Super Talent Electronics** Tanisys Testmetrix **UCA Technology** WinBond

ONFI continues to grow with over 80 members.

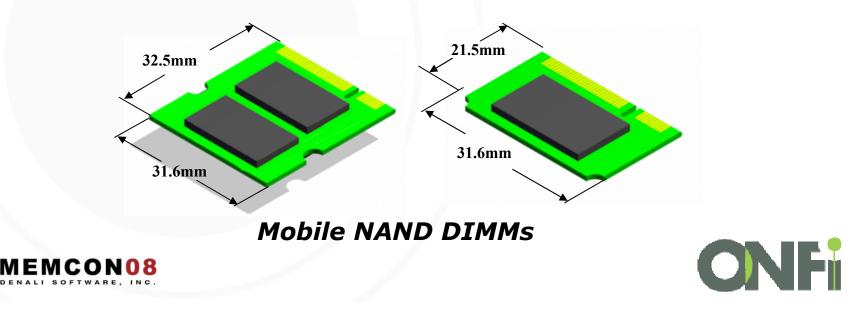
Members

*Other names and brands may be claimed as the property of others

N

ONFi 2.0 Delivers the Speed You Need

- ONFi 2.0 was published on February 27th
 - Available at www.onfi.org
- Adds a synchronous DDR interface option for high speed
 - Up to 133 MT/s in current generation
 - 3.3V and 1.8V VccQ options
 - BGA package optimized for high speed
- Many more details to come later in the presentation...



ONFI 2.0 triples the legacy NAND interface speed.

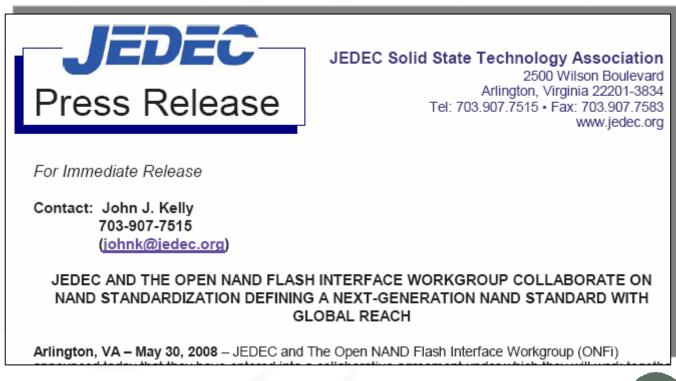
DENALI SOFTWARE, INC.


Towards NAND Ubiquity in PCs...

- As NAND becomes ubiquitous in PCs, the NAND controller will be integrated with the platform (rather than on a PCIe add-in card)
- It is not necessarily desirable to solder NAND to the platform, though
 - Need to offer customers capacity and feature choices
 - Dynamically changing price of NAND
- Desirable to have an "unregistered, unbuffered DIMM" for NAND
 - Provides a cost effective method to offer choice with the platform

Connector Specification Complete!

- The ONFi Workgroup published Revision 1.0 of the connecter specification on April 23rd
 - Available at www.onfi.org
- The ONFi connector leverages existing memory connectors
 - Avoids major tooling costs
 - Re-uses electrical verification
 - Ensures low cost and fast TTM



The ONFI connector and module are key building blocks for pervasive use of NAND in PC platforms.

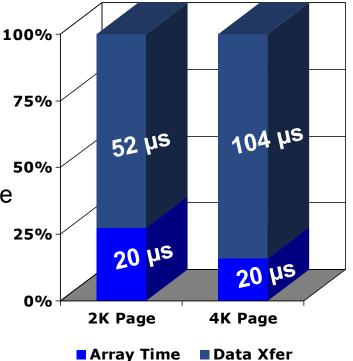
Μ

JEDEC and ONFi Launch Collaboration

- The ONFi Workgroup is pleased to team up with JEDEC on NAND standardization moving forward
- ONFi is submitting the ONFi 2.0 specification as part of the joint effort

Agenda

- ONFi Workgroup Update
 - Mission and membership
 - ONFI 2.0 specification completed
 - NAND connector specification completed
 - JEDEC collaboration established
- High-speed NAND interface details
- Extending the high-speed interface



The Outdated Legacy NAND Interface

- NAND performance is determined by two elements
 - NAND array access time
 - Data transfer time across the bus
- For legacy NAND reads, the dominant factor is the bus!
 - Performance is limited to 40 MB/s
 - With interface improvements data could be read at over 150 MB/s
- The issue gets <u>significantly worse</u> as page size increases

Legacy NAND Interface Bottleneck

Even with pipelined reads, the NAND array sits idle for $80 + \mu s$ while data is transferred to the host...

ONFi 2.0 To The Rescue...

Project Goal

- Develop a <u>scalable</u> and <u>backwards compatible</u> high speed interface that <u>does not require a DLL</u> on the NAND device
 - Performance goal: 133 MT/s initially, with scalability to at least 400 MT/s over several generations

The Result

- ONFi 2.0 source synchronous data interface
 - Scalable
 - Backwards compatible
 - No DLL on the device

Interface Roadmap							
Legacy	40 MB/s						
Gen1	~ 133 MB/s						
Gen2	~ 266 MB/s						
Gen3	400 MB/s +						

Enabling a Seamless Transition

- Source synchronous is backwards compatible with the legacy NAND interface to enable:
 - a) An orderly discovery process
 - b) To allow NAND parts to support both interfaces during transition
 - c) To allow host to support either type of NAND easily
- NAND pins are re-purposed when source synchronous is selected
 - WE# is used as a clock for data input and output (clock used when I/O is active)
 - RE# is used to indicate the direction of data transfer and bus ownership
 - A strobe (DQS) is added for latching data input and output (the only new signal)
- The pins were named using traditional DRAM nomenclature to make the interface easier to understand for those with a DRAM background

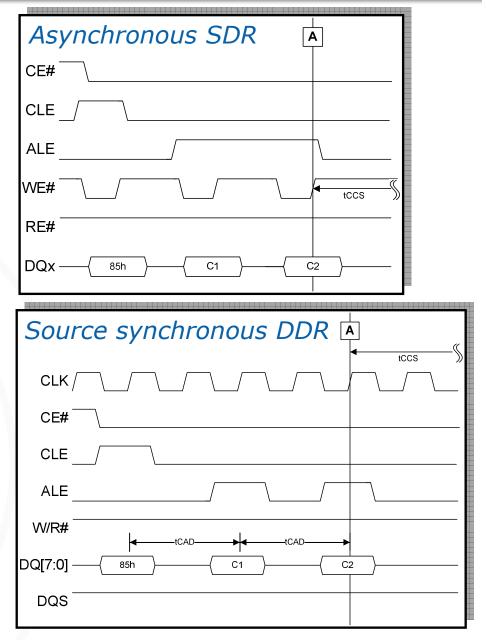
Sym	Symbol						
Traditional Source synchronous		Туре	Description				
I/O[7:0]	DQ[7:0]	I/O	Data inputs/outputs				
_	DQS	I/O	Data strobe				
WE#	CLK	Input	Write enable => Clock				
RE#	W/R#	Input	Read enable => Write / Read# direction				

Source Synchronous Discovery

Using asynchronous SDR:

- Read ID is used to identify the device supports ONFI
- Read Parameter page identifies that source synchronous is supported
- The host selects source synchronous using Set Features
- The host then enjoys using the high-speed source synchronous interface

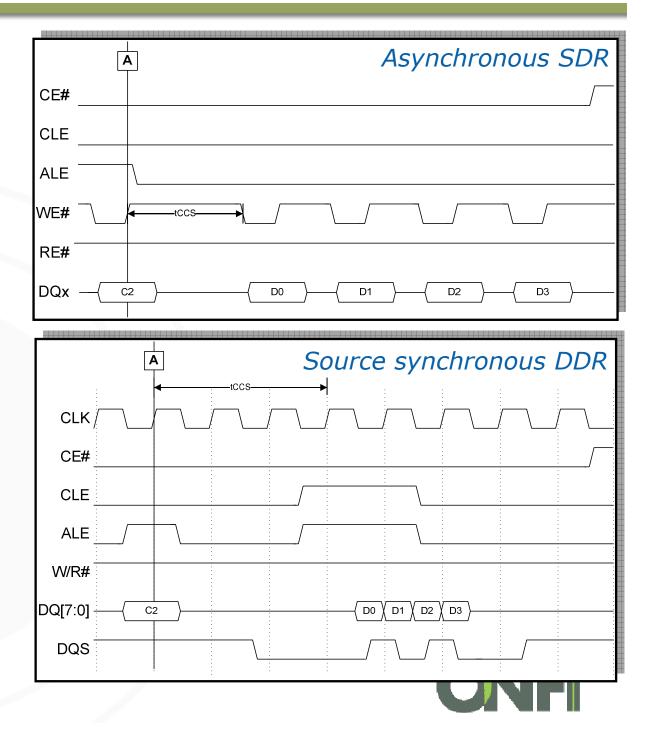
Parameter Page Information


Byte	O/M	Description						
6-7	М	eatures supported						
		6-15 Reserved (0)						
		5 1 = supports source synchronous						
		4 1 = supports odd to even page Copyback						
		3 1 = supports interleaved operations						
		2 1 = supports non-sequential page programming						
		1 1 = supports multiple LUN operations						
		0 1 = supports 16-bit data bus width						
141-142	0	Source synchronous timing mode support						
		4-15 Reserved (0)						
		3 1 = supports timing mode 3						
		2 1 = supports timing mode 2						
		1 1 = supports timing mode 1						
		0 1 = supports timing mode 0						
143	0	Source synchronous features						
		2-7 Reserved (0)						
		 1 = typical capacitance values present 						
		0 tCAD value to use						
144-145	0	CLK input pin capacitance, typical						
146-147	0	I/O pin capacitance, typical						
148-149	0	Input pin capacitance, typical						
150	М	Input pin capacitance, maximum						

Timing Mode	Mode 0	Mode 1	Mode 2	Mode 3	Unit
tCK	50	30	20	15	ns
CLK frequency	~20	~33	~50	~66	MHz
Interface speed	40	66	100	133	MT/s

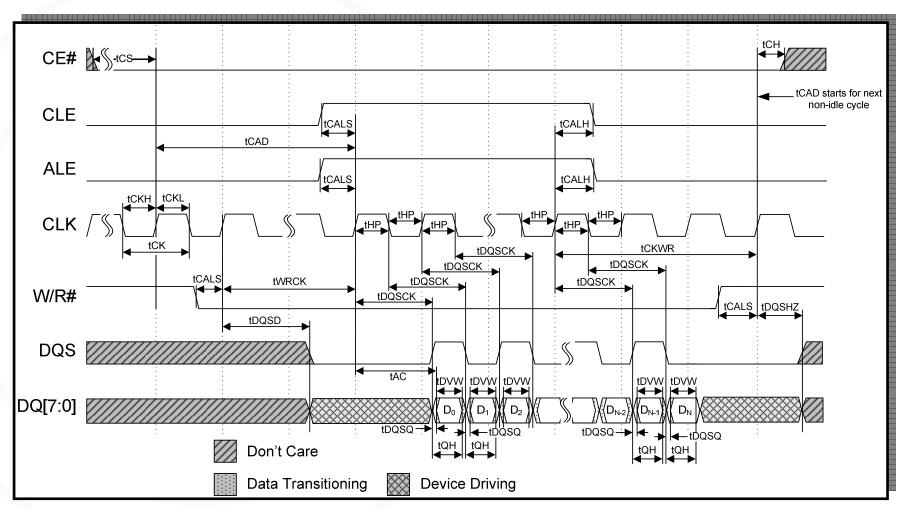
Commands

- Asynchronous SDR and source synchronous DDR command issue is very similar
- tCAD timing parameter ensures 25 ns or 45 ns is provided to process each command and address
 - Avoids redoing command state machine
 - Avoids host needing to pulse WE# at different rates for cmd/addr and data
- Traditional parameters, like tCCS, tRHW, tWHR, etc are still used
- Data strobe (DQS) is not used for command/address cycles
- Reset (FFh) always issued in asynchronous SDR mode to reset the device

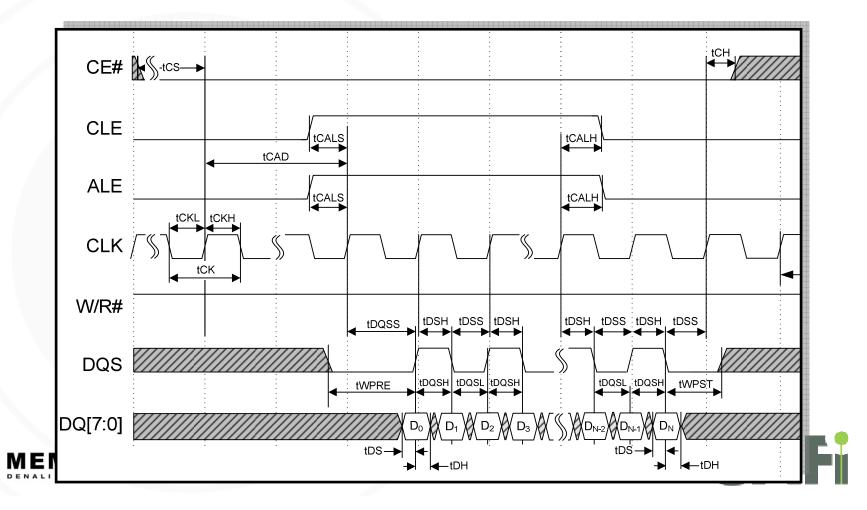


Data Phase

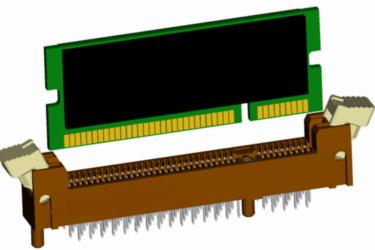
- Data is transferred on each edge of DQS
- DQS marks where the receiver should latch the data
- ALE/CLE takes on new meaning
 - 00b: Idle


MEMCO

- 11b: Data


Data Output (Reads from Device)

- Device returns two bytes for each CLK period where ALE/CLE are 11b
- Data output is latched by the host on each edge of the strobe (DQS)
 - DQ and DQS are transmitted edge aligned for ease of NAND implementation
- Device may take up to 20 ns (tDQSCK) to output data


Data Input (Writes to Device)

- Data input is latched on each edge of the strobe (DQS)
 - A strobe corresponds to each clock period where ALE/CLE is 11b
 - Bi-directional strobe used to latch data to ensure loading matched to achieve scalable solution

Impedance, Slew Rates and Robustness

- Interoperability at higher speeds is critical, especially with the connector
 - Important to make sure design can work across long trace lengths and deal with discontinuities introduced
- Input slew rates, output slew rates, and impedance values are specified
 - Ensures robust interoperable designs can be delivered

Description	VOUT to VssQ	Maximum	Nominal	Minimum	Unit
	0.2 x VccQ	95.0	39.0	21.5	Ohms
R_pulldown	0.5 x VccQ	90.0	50.0	26.0	Ohms
	0.8 x VccQ	126.5	66.5	31.5	Ohms
R_pullup	0.2 x VccQ	126.5	66.5	31.5	Ohms
	0.5 x VccQ	90.0	50.0	26.0	Ohms
	0.8 x VccQ	95.0	39.0	21.5	Ohms

TSOP and Its Limitations...

- TSOP was extended in a straightforward manner to support source synchronous
 - DQS was added on pin 35, all other pins in same location
 - VccQ and VssQ locations also defined
- However, TSOP is not suitable as speed continues to scale past 100 MT/s...
 - Package has high input capacitance due to single-sided bond pads
 - Typically up to four die can be stacked in the package leading to higher capacitance
 - Lower cost package construction than DRAM TSOP

Ssync	Async		Async	Ssync
R R R/B4# R/B3# R/B1# W/R# CE1# CE2# R Vcc Vss CE3# CLE ALE CLK WP# VSP3 R R R R R	R 1) R 2 R 3 R/B4# 4 R/B3# 5 R/B2# 6 R/B1# 7 RE# 8 CE1# 9 CE2# 10 R 11 Vcc 12 Vss 13 CE3# 14 CE4# 15 CLE 16 ALE 17 WE# 18 WP# 19 VSP3 20 R 21 R 23 R 23 R 24	48-pin TSOP and 48-pin WSOP	48 VssQ 47 R 46 R 45 R 44 IO7 43 IO6 42 IO5 41 IO4 40 R 39 VccQ 38 VSP1 37 Vcc 36 Vss 35 VSP2* 34 VccQ 33 R 32 IO3 31 IO2 30 IO1 29 IO0 28 R 27 R 26 R 25 VssQ	VssQ R R DQ7 DQ6 DQ5 DQ4 R VccQ VSP1 Vcc VSS DQS VccQ R DQ3 DQ2 DQ1 DQ0 R R R R R R VssQ

BGA Package

 ONFi 2.0 defines a BGA package optimized for source synchronous

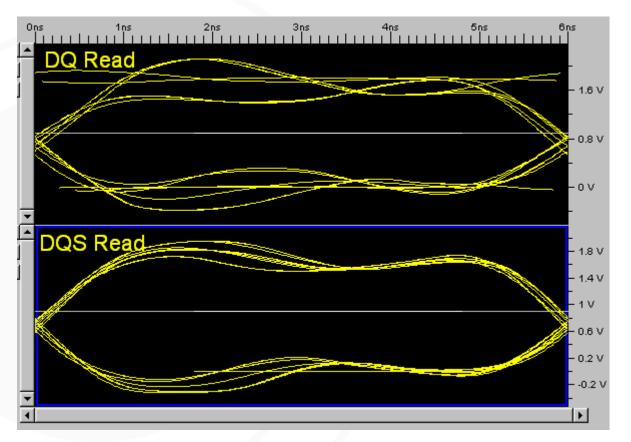
Attributes:

- Dual 8-bit interface
- More power/ground balls for lower noise
- Signals arranged with excellent signal integrity in mind
- 1mm ball spacing for low cost PCB assembly
- Two package outline options supported for increasing densities

MEMCON08

	1	2	3	4	5	6	7	8	9	10
А	R	R							R	R
В	R									R
С										
D		R	RFT	VSP3-2	WP2#	VSP2-2	VSP1-2	RFT	R	
Е		R	RFT	VSP3-1	WP1#	VSP2-1	VSP1-1	RFT	R	
F		VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	
G		VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	
Н		VSSQ	VCCQ	VREFQ2	VREFQ1	R/B2#	R/B4#	VCCQ	VSSQ	
J		DQ0-2	DQ2-2	ALE2	CE4#	R/B#	R/B3#	DQ5-2	DQ7-2	
К		DQ0-1	DQ2-1	ALE1	CE3#	CE2#	CE#	DQ5-1	DQ7-1	
L		VCCQ	VSSQ	VCCQ	CLE2	W/R2#	VCCQ	VSSQ	VCCQ	
Μ		DQ1-2	DQ3-2	VSSQ	CLE1	W/R1#	VSSQ	DQ4-2	DQ6-2	
Ν		DQ1-1	DQ3-1	DQS2#	DQS2	CLK2#	CLK2	DQ4-1	DQ6-1	
Ρ		VSSQ	VCCQ	DQS1#	DQS1	CLK1#	CLK1	VCCQ	VSSQ	
R										
Т	R									R
U	R	R							R	R

Agenda


- ONFi Workgroup Update
 - Mission and membership
 - ONFi 2.0 specification completed
 - NAND connector specification completed
 - JEDEC collaboration established
- High-speed NAND interface details
- Extending the high-speed interface

There is Head Room

 Why stop at 133 MT/s? Successful operation at 166 MT/s for 8 NAND die with a connector!

MEMCONO denali software, ind

Enter ONFi 2.1...

- Work on the 2.1 specification started early this year, with target completion in 2H'08
- Recognizes head room by defining 166 MT/s and 200 MT/s timing modes
- Includes additional new features, like an interleaved read command to continue moving the industry forward

Parameter	Moo	de O	Mo	ode 1 Mode 2		Mode 3		Mode 4		Mode 5		Unit	
	5	0	3	0	2	20		15		12		0	ns
	~2	20	~	33	~	50	~66		~83		~100		MHz
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
tAC	—	20	—	20	_	20	—	20	_	20	—	20	ns
tADL	100	_	100	_	70	_	70	_	70	_	70	_	ns
tCADf	25	_	25	_	25	—	25	_	25	_	25	—	ns
tCADs	45	_	45	_	45	_	45	_	45	_	45	_	ns
tCAH	10	_	5	_	4	—	3	-	2.5	_	2	—	ns
tCALH	10	_	5	_	4	—	3	_	2.5	_	2	—	ns
tCALS	10	_	5	_	4	_	3	_	2.5	_	2	—	ns
tCAS	10	_	5	_	4	_	3	_	2.5	_	2	—	ns
tCH	10	_	5	_	4	_	3	_	2.5	_	2	_	ns
tCK(avg) or tCK	50	_	30	_	20	_	15	_	12	—	10	_	ns
tCK(abs)		Minimum: tCK(avg) + tJIT(per) min Maximum: tCK(avg) + tJIT(per) max											ns

DENALI SOFTWARE, INC

Summary

- ONFi source synchronous is designed to preserve backwards compatibility, ease NAND transitions, and scale in speed across multiple generations
- Benefits of ONFi 2.0 solution:
 - Delivers 133 MT/s in first generation, scales up to 400 MT/s through straightforward techniques (like complementary signals)
 - Lower power by separating Vcc and VccQ, and lower VccQ (1.8V)
 - Backwards compatible with legacy NAND interface, including with TSOP
 - Standard BGA package designed to overcome speed limitations of TSOP
 - Ensures that NAND controllers can be confidently designed for future NAND devices through mechanisms like Read Parameter Page
- ONFi 2.1 scales performance to 166 MT/s and 200 MT/s

Achieve breakthrough performance with ONFI 2.0 today! For more information, visit www.onfi.org.

